--- title: "Vignette: Simulation of (weighted) trawl processes" author: "Almut Veraart" date: "`r Sys.Date()`" output: html_document vignette: > %\VignetteIndexEntry{Vignette: Simulation of (weighted) trawl processes} %\VignetteEngine{knitr::rmarkdown} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} %\VignetteDepends{ggplot2} bibliography: ambitpackagebib.bib --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # Definition of a (weighted) trawl process The `ambit` package can be used to simulate univariate (weighted) trawl processes of the form $$ Y_t =\int_{(-\infty,t]\times \mathbb{R}} p(t-s)\mathbb{I}_{(0, a(t-s))}(x)L(dx,ds), \mbox{ for } t \ge 0. $$ We refer to $p$ as the weight/kernel function, $a$ as the trawl function and $L$ as the Lévy basis. If the function $p$ is given by the identity function, $Y$ is a trawl process, otherwise we refer to $Y$ as a weighted trawl process. ## Choice of the trawl function This package only considers the case when the trawl function, denoted by $a$, is strictly monotonically decreasing. The following implementations are currently included in the function `sim_weighted_trawl`: * Exponential trawl function ("Exp"): The trawl function is parametrised by one parameter $\lambda>0$ and defined as $$a(x)=\exp(-\lambda x), \qquad \mathrm{for \,} x \geq 0.$$ * supIG trawl function ("supIG"): The trawl function is parametrised by two parameters $\delta$ and $\gamma$, which are assumed to not be simultaneously equal to zero, and is defined as $$a(x)=(1+2x\gamma^{-2})^{-1/2}\exp(\delta \gamma(1-(1+2x\gamma^{-2})^{1/2})), \qquad \mathrm{for \,} x \geq 0.$$ * supGamma trawl function ("LM"): The trawl function is parametrised by two parameters $H> 1$ and $\alpha > 0$, and is defined as $$a(x) = (1+x/\alpha)^{-H}, \qquad \mathrm{for \,} x \geq 0.$$ Alternatively, the user can use the function `sim_weighted_trawl_gen` which requires specifying a monotonic trawl function $a(\cdot)$. ## Choice of kernel/weight The user can choose a suitable weight function $p$. If no weight function is provided, then the function $p(x)=1$ for all $x$ is chosen. I.e. the resulting process is a trawl process rather than a weighted trawl process. ## Choice of Lévy bases The driving noise of the process is given by a homogeneous Lévy basis denoted by $L$ with corresponding Lévy seed $L'$. In the following, we denote by $A$ a Borel set with finite Lebesgue measure. The following infinitely divisible distributions are currently included in the implementation: ### Support on $(0, \infty)$ * Gamma distribution ("Gamma"): $L'\sim \Gamma(\alpha_g, \sigma_g)$, where $\alpha_g>0$ is the shape parameter and $\sigma_g>0$ the scale parameter. Then the corresponding density is given by $$ f(x)=\frac{1}{\sigma_g^{\alpha_g}\Gamma(\alpha_{g})}x^{\alpha_g-1}e^{-x/\sigma_g}, $$ for $x>0$. The characteristic function is given by $$ \psi(u)=(1-ui\sigma_g)^{\alpha_g}, $$ for $u\in \mathbb{R}$. We note that $\mathbb{E}(L')=\alpha_g \sigma_g$, $\mathrm{Var}(L')=\alpha_g \sigma_g^2$ and $c_4(L')=6\alpha \sigma^4$. Here we have $$ L(A)\sim \Gamma(\mathrm{Leb}(A)\alpha_g, \sigma_g). $$ ### Support on $\mathbb{R}$ * Gaussian case ("Gaussian"): $L'\sim \mathrm{N}(\mu, \sigma^2)$. In this case, $$ L(A)\sim \mathrm{N}(\mathrm{Leb}(A)\mu, \mathrm{Leb}(A)\sigma^2). $$ We note that $\mathbb{E}(L')=\mu$, $\mathrm{Var}(L')=\sigma^2$ and $c_4(L')=0$. * Cauchy distribution ("Cauchy"): $L'\sim \mathrm{Cauchy}(l, s)$, where $l\in \mathbb{R}$ is the location parameter and $s>0$ the scale parameter. The corresponding density is given by $$ f(x)=\frac{1}{\pi s(1+(x-l)/s)^2}, \quad x \in \mathbb{R}, $$ and the characteristic function is given by $$ \psi(u)=l i u-s|u|, \quad u \in \mathbb{R}. $$ Here we have $$ L(A) \sim \mathrm{Cauchy}(l\mathrm{Leb}(A), s\mathrm{Leb}(A)). $$ * Normal inverse Gaussian case ("NIG"): $L'\sim \mathrm{NIG}(\mu, \alpha, \beta, \delta)$, where $\mu \in \mathbb{R}$ is the location parameter, $\alpha \in \mathbb{R}$ the tail heaviness parameter, $\beta \in \mathbb{R}$ the asymmetry parameter and $\delta\in \mathbb{R}$ the scale parameter. We set $\gamma=\sqrt{\alpha^2-\beta^2}$. The corresponding density is given by $$ f(x)=\frac{\alpha \delta K_1(\alpha\sqrt{\delta^2+(x-\mu)^2})}{\pi\sqrt{\delta^2+(x-\mu)^2}} \exp(\delta \gamma+\beta(x-\mu)), \quad x \in \mathbb{R}. $$ Here $K_1$ denotes the Bessel function of the third kind with index 1. The characteristic function is given by $$ \psi(u)=\exp(iu\mu+\delta(\gamma-\sqrt{\alpha^2-(\beta+iu)^2})), \quad u \in \mathbb{R}. $$ In this case, we have $$ L(A)\sim \mathrm{NIG}(\mu \mathrm{Leb}(A), \alpha, \beta, \delta \mathrm{Leb}(A)). $$ Also, $\mathbb{E}(L')=\mu +\frac{\delta \beta}{\gamma}$, $\mathrm{Var}(L')=\frac{\delta \alpha^2}{\gamma^3}$ and $c_4(L')=\frac{3\alpha^2\delta(4\beta^2+\alpha^2)}{\gamma^7}$. ### Support on $\mathbb{N}_0=\{0, 1, \ldots\}$ * Poisson case ("Poisson"): $L' \sim \mathrm{Poi}(v)$ for $v > 0$. In this case, $$ L(A)\sim \mathrm{Poi}(\mathrm{Leb}(A)v). $$ We note that $\mathbb{E}(L')=\lambda$, $\mathrm{Var}(L')=\lambda$ and $c_4(L')=\lambda$. * Negative binomial case ("NegBin"): $L'\sim \mathrm{NegBin}(m, \theta)$ for $m>0, \theta \in (0, 1)$. I.e. the corresponding probability mass function is given by $\mathrm{P}(L'=x)=\frac{1}{x!}\frac{\Gamma \left( m +x\right) }{\Gamma \left( m \right) }\left( 1-\theta \right)^{m }\theta^{x}$ for $x \in \{0, 1, \ldots\}$. We note that $\mathbb{E}(L')=m \theta/(1-\theta)$, $\mathrm{Var}(L')=m \theta/(1-\theta)^2$ and $c_4(L')=m\theta(\theta^2+4\theta+1)/(\theta-1)^4$. Then, $$ L(A)\sim \mathrm{NegBin}(\mathrm{Leb}(A)m, \theta). $$ ### Examples We demonstrate the simulation of various trawl processes. ```{r} library(ambit) library(ggplot2) ``` We start off with a trawl with standard normal marginal distribution and exponential trawl function. ```{r} #Set the number of observations n <-2000 #Set the width of the grid Delta<-0.1 #Determine the trawl function trawlfct="Exp" trawlfct_par <-0.5 #Choose the marginal distribution distr<-"Gauss" #mean 0, std 1 distr_par<-c(0,1) #Simulate the path set.seed(233) path <- sim_weighted_trawl(n, Delta, trawlfct, trawlfct_par, distr, distr_par)$path #Plot the path df <- data.frame(time = seq(0,n,1), value=path) p <- ggplot(df, aes(x=time, y=path))+ geom_line()+ xlab("l")+ ylab("Trawl process") p #Plot the empirical acf and superimpose the theoretical one #Plot the acf my_acf <- acf(path, plot = FALSE) my_acfdf <- with(my_acf, data.frame(lag, acf)) #Confidence limits alpha <- 0.95 conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(n) q <- ggplot(data = my_acfdf, mapping = aes(x = lag, y = acf)) + geom_hline(aes(yintercept = 0)) + geom_segment(mapping = aes(xend = lag, yend = 0))+ geom_hline(yintercept=conf.lims, lty=2, col='blue') + geom_function(fun = function(x) acf_Exp(x*Delta,trawlfct_par), colour="red", size=1.2)+ xlab("Lag")+ ylab("Autocorrelation") q ``` The same trawl process can be obtained using the `sim_weighted_trawl_gen` instead as follows: ```{r} #Set the number of observations n <-2000 #Set the width of the grid Delta<-0.1 #Determine the trawl function trawlfct_par <-0.5 a <- function(x){exp(-trawlfct_par*x)} #Choose the marginal distribution distr<-"Gauss" #mean 0, std 1 distr_par<-c(0,1) #Simulate the path set.seed(233) path <- sim_weighted_trawl_gen(n, Delta, trawlfct_gen=a, distr, distr_par)$path #Plot the path df <- data.frame(time = seq(0,n,1), value=path) p <- ggplot(df, aes(x=time, y=path))+ geom_line()+ xlab("l")+ ylab("Trawl process") p #Plot the empirical acf and superimpose the theoretical one #Plot the acf my_acf <- acf(path, plot = FALSE) my_acfdf <- with(my_acf, data.frame(lag, acf)) #Confidence limits alpha <- 0.95 conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(n) q <- ggplot(data = my_acfdf, mapping = aes(x = lag, y = acf)) + geom_hline(aes(yintercept = 0)) + geom_segment(mapping = aes(xend = lag, yend = 0))+ geom_hline(yintercept=conf.lims, lty=2, col='blue') + geom_function(fun = function(x) acf_Exp(x*Delta,trawlfct_par), colour="red", size=1.2)+ xlab("Lag")+ ylab("Autocorrelation") q ```